Effects of city-size heterogeneity on epidemic spreading in a metapopulation: A reaction-diffusion approach

نویسندگان

  • Halvor Lund
  • Ludvig Lizana
  • Ingve Simonsen
چکیده

We review and introduce a generalized reaction-diffusion approach to epidemic spreading in a metapopulation modeled as a complex network. The metapopulation consists of susceptible and infected individuals that are grouped in subpopulations symbolising cities and villages that are coupled by human travel in a transportation network. By analytic methods and numerical simulations we calculate the fraction of infected people in the metaopoluation in the long time limit, as well as the relevant parameters characterising the epidemic threshold that separates an epidemic from a non-epidemic phase. Within this model, we investigate the effect of a heterogeneous network topology and a heterogeneous subpopulation size distribution. Such a system is suited for epidemic modeling where small villages and big cities exist simultaneously in the metapopulation. We find that the heterogeneous conditions cause the epidemic threshold to be a non-trivial function of the reaction rates (local parameters), the network’s topology (global parameters) and the cross-over population size that separates “village dynamics” from “city dynamics”.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Scaling of Human Contacts and Epidemic Processes in Metapopulation Networks

We study the dynamics of reaction-diffusion processes on heterogeneous metapopulation networks where interaction rates scale with subpopulation sizes. We first present new empirical evidence, based on the analysis of the interactions of 13 million users on Twitter, that supports the scaling of human interactions with population size with an exponent γ ranging between 1.11 and 1.21, as observed ...

متن کامل

Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: theory and simulations.

The spatial structure of populations is a key element in the understanding of the large-scale spreading of epidemics. Motivated by the recent empirical evidence on the heterogeneous properties of transportation and commuting patterns among urban areas, we present a thorough analysis of the behavior of infectious diseases in metapopulation models characterized by heterogeneous connectivity and m...

متن کامل

Strategy to suppress epidemic explosion in heterogeneous metapopulation networks.

We propose an efficient strategy to suppress epidemic explosion in heterogeneous metapopulation networks, wherein each node represents a subpopulation with any number of individuals and is assigned a curing rate that is proportional to kα with the node degree k and an adjustable parameter α. We perform stochastic simulations of the dynamical reaction-diffusion processes associated with the susc...

متن کامل

Competing spreading processes and immunization in multiplex networks

Epidemic spreading on physical contact network will naturally introduce the human awareness information diffusion on virtual contact network, and the awareness diffusion will in turn depress the epidemic spreading, thus forming the competing spreading processes of epidemic and awareness in a multiplex networks. In this paper, we study the competing dynamics of epidemic and awareness, both of wh...

متن کامل

Epidemic fronts in complex networks with metapopulation structure.

Infection dynamics have been studied extensively on complex networks, yielding insight into the effects of heterogeneity in contact patterns on disease spread. Somewhat separately, metapopulations have provided a paradigm for modeling systems with spatially extended and "patchy" organization. In this paper we expand on the use of multitype networks for combining these paradigms, such that simpl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012